

BOA1260050YY400MXXXX

Fiber Coupled Booster Semiconductor Optical Amplifier

Features:

- High output power >400mW @ 1260nm
- High saturation output power (20dBm)
- Proprietary anti-reflection coating technology enabling high reliability
- Polarization maintaining PM980 (PM1310 optional) fiber or HI1060 fiber
- 900um loose tube on fiber (optional)

Applications:

- LiDAR
- Datacom
- Swept sources, tunable lasers
- Rydberg atoms

Recommended Operating Conditions

@ CW, Tcase=25°C

Parameter	Min.	Typ.	Max.	Unit
Chip Temperature	20	25	40	°C
Forward Current		2000	3000	mA
Output Power in Amplification Mode			400	mW
Input Optical Power	-25	10	15	dBm

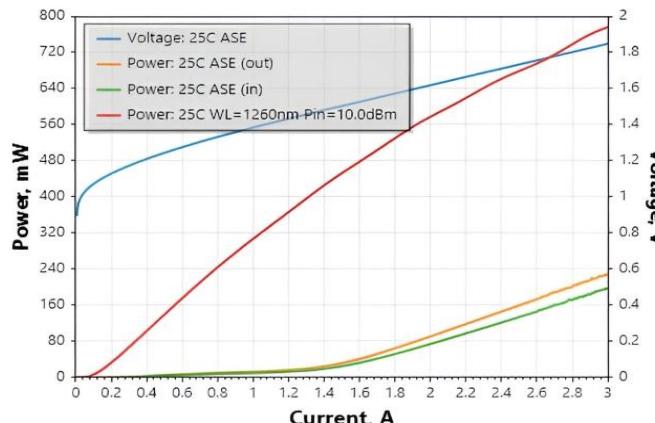
Gain Characteristics

@ CW, 25°C, 2000mA, with input signal 10dBm, 1260nm

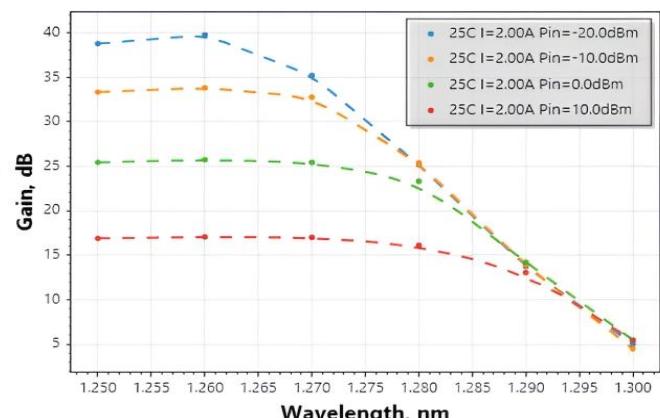
Parameter	Min.	Typ.	Max.	Unit
Forward Current @ 400mW			3000	mA
Saturation Output Power @ -3dB	16	20		dBm
Gain	12	16		dB
Small Signal Gain @ Pin=-20dBm	30	35		dB
Peak Wavelength	1250	1260	1270	nm
Bandwidth @ -3dB		50		nm
Noise Figure @ 2A; Pin=-20dBm		6.5		dB

Amplified Spontaneous Emission (ASE) Characteristics

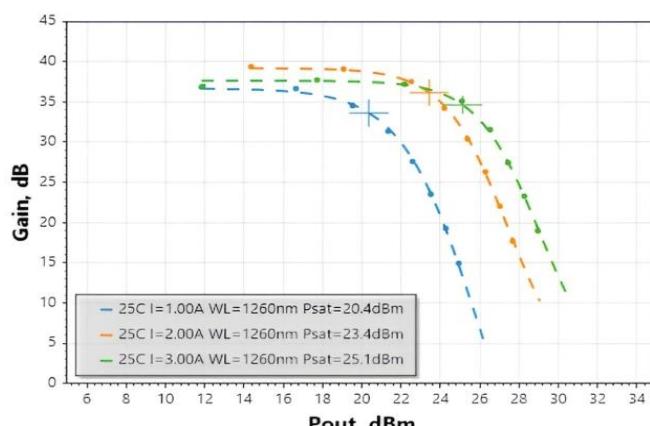
@ CW, 25°C, 2000mA, no input signal

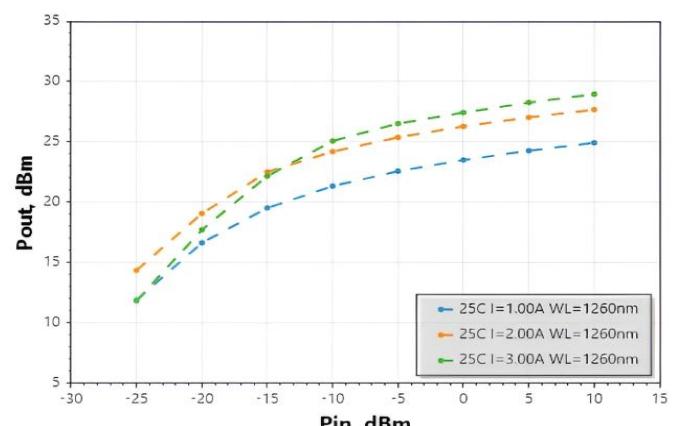

Parameter	Min.	Typ.	Max.	Unit
Output Power (each port)		70		mW
Forward Voltage		1.7	2.2	V
Mean Wavelength		1190		nm
Bandwidth (FWHM)		12		nm
Ripples* (RMS)		0.02	1	dB
Polarisation Extinction Ratio (PER)	13	18		dB
Polarization			TE	

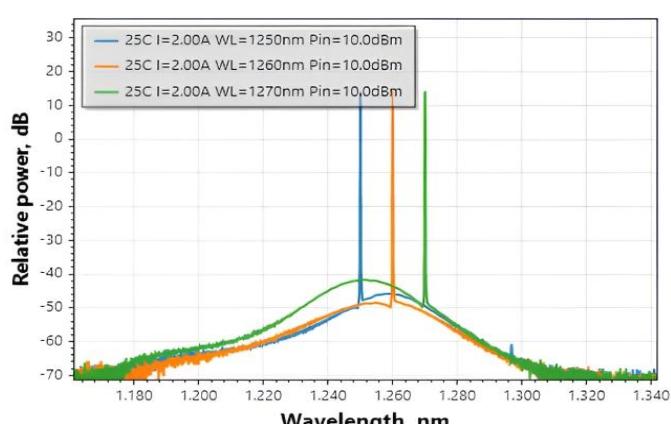
* - measured in 1nm span around spectrum maximum with 20pm resolution.

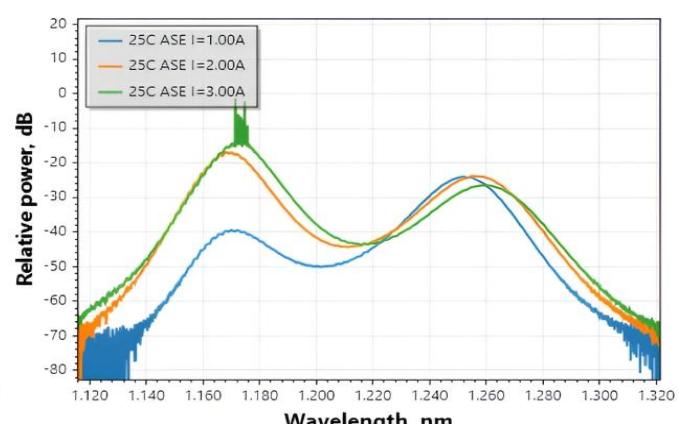

Typical Performance (for reference only)

@ CW, Tcase=25°C

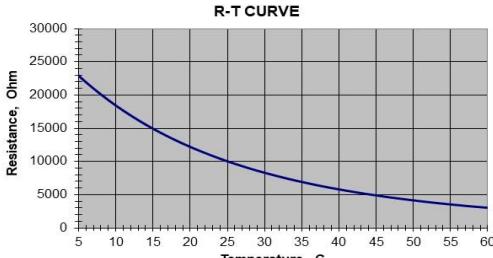

Output Power vs Operating Current

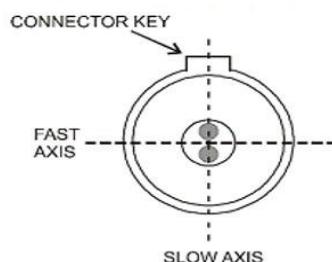

Gain Spectra


Gain vs Output Power

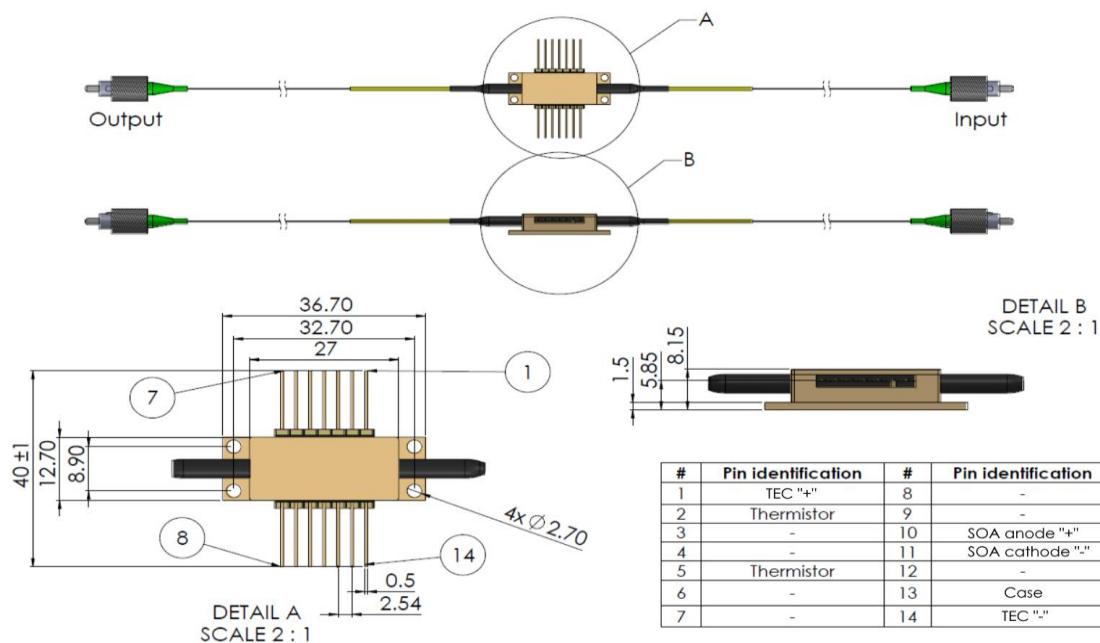

Output Power vs Input Power

Optical Spectra of Amplified Optical Signals


Optical Spectra (ASE)


Absolute Maximum Ratings

Parameter	Min	Max	Unit
Output Optical Power		800	mW
Input Optical Power		20	dBm
Forward Current		3500	mA
Reverse Voltage		2	V
TEC Current		3	A
TEC Voltage		4	V
Chip Operating Temperature	5	50	°C
Case Operating Temperature	0	50	°C
Storage Temperature	0	50	°C
Pin Soldering Temperature (max 10 sec, max case temperature 120°C)		300	°C
Fiber Band Radius	3		cm


Thermistor specification

Parameters	Value	Unit	Parameters	Value	Value	Unit
Type	NTC		Fiber Type	HI1060	PM980	
Resistance @ 25°C	10±0.1	kOhm	Numerical Aperture (Typical)	0.14	0.12	
Beta 25-85°C	3435±1%	K	Cut-off Wavelength	920±50	900±70	nm
R-T CURVE						

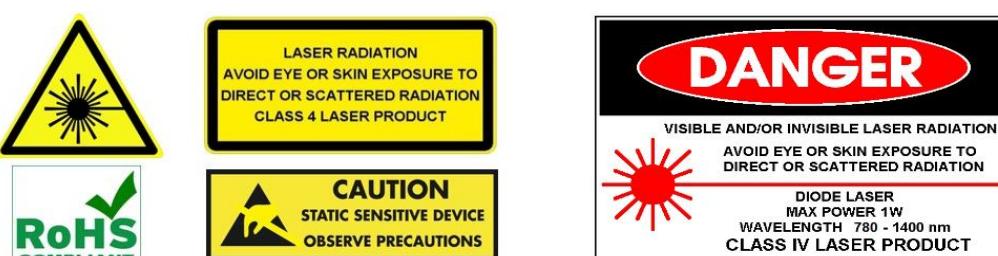
The output light is polarized along the slow axis of PM fiber.

Dimensions (in mm)

Safety and Operating Instructions

The light emitted from this device is invisible and can be harmful to the human eye. Avoid looking directly into the fiber connector when the device is in operation. Proper laser safety eyewear must be worn during operation with open connector.

Absolute Maximum Ratings may be applied to the device for short period of time only. Exposure to maximum ratings for extended period of time or exposure to more than one maximum rating may cause damage or affect the reliability of the device. Operating the device outside of its maximum ratings may cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum forward current cannot be exceeded.


A proper heatsink for the device on thermal radiator is required. The device must be mounted on radiator with 4 screws (bolt down in X-style fashion with initial torque set to 0.075Nm and final X-style bolt down at 0.15Nm) or with clamps.

The deviation from flatness of radiator surface must be less than 0.05mm. It's recommended using of Indium foil or thermal conductive and soft material between bottom of the case and heatsink for thermal interface. It's undesirable to use thermal grease for this.

It is highly recommended to use a mount with additional temperature stabilization for the module's case. Even short-term exceeding of the Case Operating Temperature during operation can cause damage to the device.

Avoid back reflection to the device. It may give impact on the device performance in aspects of spectrum and power stability. It also may cause fatal facet damage. Using of optical isolators is highly recommended to block back reflection. Do not pull the fiber. Do not bend a fiber with a radius smaller than 3 cm. Fiber tip should always be protected from any contamination or damage during the process of installation. After removing the dust-preventing cap covered at fiber tip, carefully clean fiber tip by wiping through one direction using optical lens cleaning paper or cotton swab dabbed with Iso-Propanol or Ethyl alcohol. Operate the device with clean fiber connector only.

ESD PROTECTION - Electrostatic discharge is the primary cause of unexpected product failure. Take extreme precaution to prevent ESD. During device installation, ESD protection has to be maintained - use wrist straps, grounded work surfaces and rigorous antistatic techniques when handling the product.

Part-number Identification

BOA1260050HI400MXXXX -> 400mW output power at 1260nm mean wavelength, 50nm bandwidth, HI-1060 fiber
BOA1260050PM400MLXXX -> 400mW output power at 1260nm mean wavelength, 50nm bandwidth, PM-980 fiber, with loose tube

NOTE: Innolume product specifications are subject to change without notice