

852 nm Grating Stabilized TO Can Laser Diode, 600 mW

LD852-SEV600

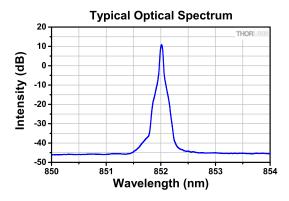
Description

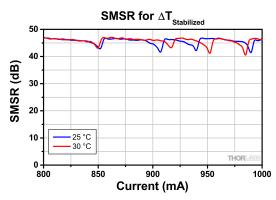
The LD852-SEV600 852 nm, Single-Frequency TO-Can Laser Diode is based on quantum well epitaxial layer growth and a highly reliable ridge waveguide structure with external volume holographic grating (VHG) feedback. This single-transverse mode laser diode features high optical output power and produces a wavelength stabilized spectrum with a single frequency narrow linewidth over the operating power range of approximately 500 to 600 mW. Contained in a Ø9 mm package, the LD852-SEV600 laser is ideal for illumination, printing, 3D sensing, instrumentation, defense and medical applications. This diode can be custom ordered for a wider wavelength-stabilized temperature range.

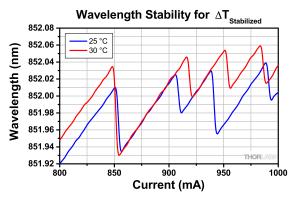
Specifications

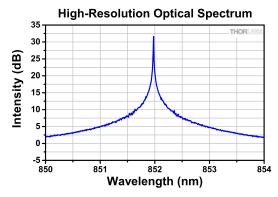
LD852-SEV600 Absolute Maximum Ratings			
LD Reverse Voltage (Max)	2 V		
Absolute Max Current	1050 mA		
Absolute Max Power	610 mW		
Operating Temperature	0 to 50 °Ca		
Storage Temperature	-10 to 65 °C		
Pin Code	E		

LD852-SEV600 ^b				
	Symbol	Min	Typical	Max
Center Wavelength	λ _C	850 nm	852 nm	854nm
Single Frequency Output Power ^c (CW @ I _{CW} and T _{CS})	P _{CW-SF}	550 mW	600 mW	-
Single Frequency Power Range	ΔP_{SF}	100 mW ^d	-	-
Operating Current (CW)	I _{CW}	-	-	1050 mA
Center Temperature for ΔT _{stabilized}	T _{CS}	15 °C	-	30 °C
Wavelength Stabilized Temperature Range	ΔT _{stabilized}	5 °C	-	-
Threshold Current	I _{TH}	-	250 mA	350 mA
Side Mode Suppression Ratio (SMSR)	SMSR	25 dB	40 dB	-
Forward Voltage	V_{F}	-	2.2 V	2.8 V
Slope Efficiency at 25 °C	ΔΡ/ΔΙ	-	0.8 W/A	-
Laser Linewidth	Δν	-	20 MHz	-
Transverse Beam Divergence Angle (FWHM)	θτ	-	13°	16°
Lateral Beam Divergence Angle (FWHM)	θ_{L}	-	8°	10°


- a. The wavelength-stabilized temperature range typically spans a minimum of 5 °C centered on a temperature between 15 °C and 30 °C. This specification is given for each device on the unit-specific data sheet. When operated outside of the operating temperature range the laser diode will no longer be wavelength stabilized.
- b. In order to achieve the specified performance, we recommend using the TCLDM9 Laser Diode Mount and, when collimated, an NIR optical Isolator; single frequency performance when collimated is only guaranteed with >30 dB isolation of back reflections.
- c. This value is the upper limit of the range where the diode can produce single frequency output and varies from laser to laser. The performance of each individual laser can be found on the unit-specific data sheet.
- d. This value is specified for temperatures in the range given by T_{CS} ± ½/T_{stabilized}. The 100 mW minimum single frequency power range corresponds to output powers between the typical P_{CW-SF}-ΔP_{SF} and P_{CW-SF}, i.e., between 500 mW and 600 mW.

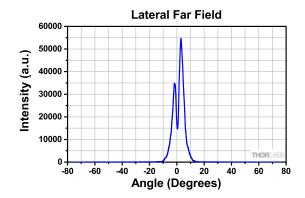

Typical Performance Plots

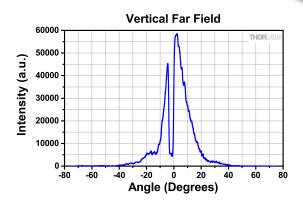

The typical output power vs. current is shown for four temperatures within the wavelength stabilized temperature range $(\Delta T_{Stabilized})^*$ of a LD852-SEV600 laser diode.


The typical optical spectrum is shown above. The data was obtained with a 1000 mA drive current and the device held at 25 $^{\circ}$ C.

The typical side mode suppression ratio (SMSR) is shown for three temperatures within the wavelength stabilized temperature range $(\Delta T_{\text{Stabilized}})^*$.

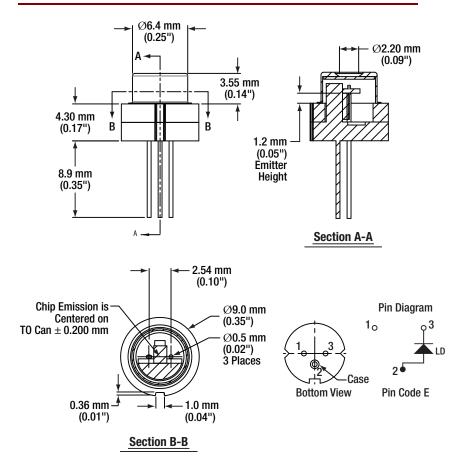
When used within the wavelength stabilized temperature range ($\Delta T_{Stabilized}$)*, the LD852-SEV600 shows excellent wavelength stability over a range of drive currents.




This high-resolution optical spectrum is obtained using one of Thorlabs' Optical Spectrum Analyzers (OSA201), which provides 8 pm resolution at 852 nm.

^{*} For each LD852-SEV600 laser, graphs of output power vs. current, wavelength stability and SMSR for $T_{\text{Stabilized}}$ will be provided on the item-specific data sheet.

Typical Performance Plots Cont.



The diverging beam from the laser chip freely propagates through the external volume holographic grating (VHG), while the light in the center of the beam is reflected back into the chip. This results in a stabilized wavelength emitting from the laser and also creates a dark spot in the far field, as shown in the graphs above.

These were measured with a current of 1000 mA.

Drawing

