

7416 nm DFB Quantum Cascade Laser, 20 mW (Min)

QD7416HH

Description

The QD7416HH is a single spatial mode, single longitudinal mode, distributed feedback quantum cascade laser contained in a high heat load (HHL) package, designed and manufactured by Thorlabs. This laser operates in continuous wave (CW) mode at room temperature, and the lasing wavelength can be tuned through 7416 nm, making this laser ideal for Sulfur Dioxide (SO_2) detection.

The QD7416HH has a collimated output and offers a standard HHL pinout for electrical and temperature control. Its package is sealed, although the seal is not hermetic. There is no monitor photodiode.

Specifications

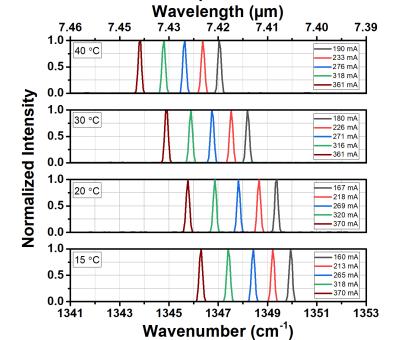
Absolute Maximum Ratings (CW Operation)					
Absolute Max Operating Current	Varies Between Devices ^a				
Absolute Max Output Power	300 mW				
LD Reverse Voltage (Max)	1 V				
PD Reverse Voltage (Max)	N/A				
TEC Current (Max)	4.5 A				
TEC Voltage (Max)	6.5 V				
Operating Temperature	15 to 45 °C ^b				
Storage Temperature	-40 to 85 °Cb				

- a. The absolute maximum current is determined on a device-by-device basis and is listed on the device's data sheet.
- b. Non-condensing environment. Single mode performance at the target wavelength is guaranteed within this range, with individual operating conditions listed on the device datasheet.

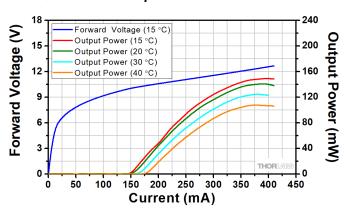
Thermistor Characteristics (T _{CASE} = 25 °C)						
	Symbol	Min	Typical	Max		
Thermistor Resistance ^c	R_{th}	-	10 kΩ	-		
Stainbart Hart Coefficients	Α	-	1.129 × 10 ⁻³ K ⁻¹	-		
Steinhart-Hart Coefficients	В	-	2.341 × 10 ⁻⁴ K ⁻¹	-		
$(T_{CASE} = 25 °C)$	С	-	$0.878 \times 10^{-7} \mathrm{K}^{-1}$	-		

c. Thermistor resistance follows the Steinhart-Hart equation:

$$\frac{1}{T} = A + B(\ln R_{th}) + C(\ln R_{th})^3$$

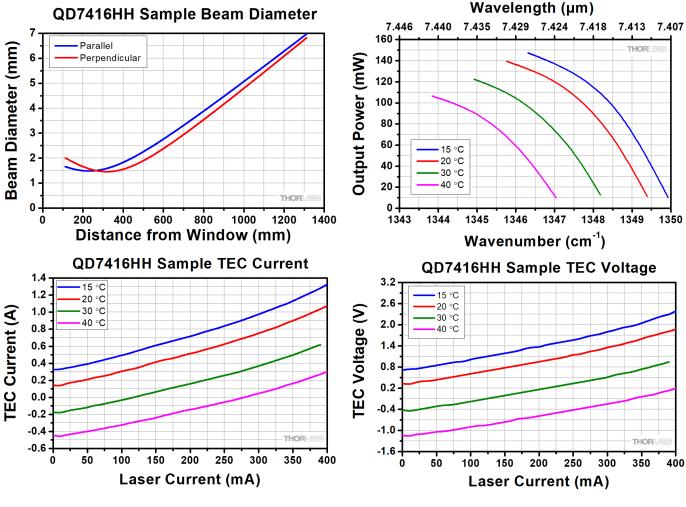

Specifications (Cont.)

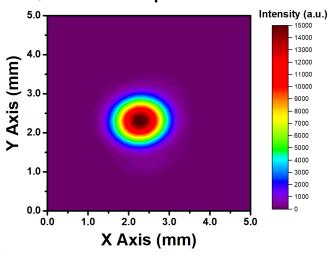
Optical Electrical Characteristics (CW Operation)						
		Symbol	Min	Typical	Max	
Center Wavelength		λ	-	7.416 µm	-	
Operating Temperature		T_{op}	15 °C	•	45 °C	
Tuning Range		$\Delta ar{ u}$		3 cm ⁻¹	-	
Temperature Tuning		$\Delta \bar{\nu}/\Delta T$	-	-0.08 cm ⁻¹ /°C	-	
Side Mode Suppression		SMSR	20 dB	-	-	
Optical Output Power		P _{out}	20 mW	100 mW	-	
Operating Current		l _{op}	ı	1	1000 mA	
Threshold Current		I_th	ı	300 mA	-	
Forward Voltage		V_{F}	ı	12 V	-	
Beam Pointing	Parallel ^d	•	-0.75°	0°	+0.75°	
	Perpendicular ^d	•	-2.75°	-2.0°	-1.25°	
Beam Divergence	Parallel ^d	θι	3 mrad	6 mrad	11 mrad	
Angle (FWHM)	Perpendicular ^d	$ heta_{\perp}$	3 mrad	6 mrad	11 mrad	
M ²	Parallel ^d	M^2_{\parallel}	1.0	1.1	1.3	
	Perpendicular ^d	M^2_\perp	1.0	1.1	1.3	
Minimum Beam Diameter (D4o Method)e		D	0.5 mm	1.5 mm	2.5 mm	


- d. For this laser, these terms are defined with respect to the plane of the base plate.
- e. Obtained by scanning a razor across the beam and measuring the points where 10% of the total beam intensity and 90% of the total beam intensity are observed.

Sample Performance Plots

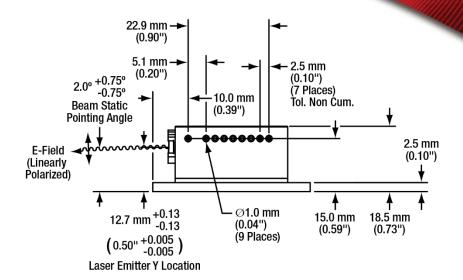
QD7416HH CW Spectral Characteristics

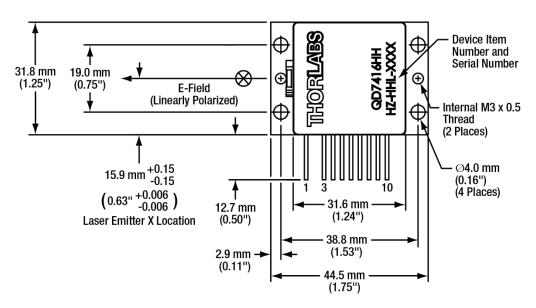

QD7416HH Sample L-I-V Characteristics



QD7416HH Output Power vs. Wavelength

Sample Performance Plots (Cont.)




QD7416HH Sample Beam Profile

Drawings for QD7416HH

Pin	Description	Pin	Description
1	TEC (-)	6	Thermistor, 10 kΩ
2	Not Present	7	Laser Cathode (-)
3	N/C	8	EEPROM ^a (+)
4	Laser Anode (+)	9	EEPROM ^a (-/Ground)
5	Thermistor, 10 kΩ	10	TEC (+)

a. This device contains an EEPROM with stored laser operation points, including max current, threshold current, operation temperature, and operation current, for future use. For individuals with user-supplied, third-party solutions capable of reading EEPROMs, please contact Tech Support for more information.