785 nm Grating Stabilized, Single-Frequency Laser Diode FPV785S #### **Description** The FPV785S 785 nm, Single-Frequency, Wavelength-Stabilized Laser Diode is based on quantum well epitaxial layer growth and a highly reliable ridge waveguide structure with external volume-holographic-grating (VHG) feedback. This single-frequency laser diode is housed in a butterfly package with an internal optical isolator, monitor diode, TEC and a thermistor that allows the laser to be temperature controlled. This laser diode produces a wavelength-stabilized spectrum with a single-frequency narrow linewidth over the operating power range of approximately 30 to 50 mW. The output is coupled to 1.0 m of FC/APC-terminated 780HP single-mode fiber. #### **Specifications** | Absolute Maximum Ratings ^a | | | | |---------------------------------------|----------------|--|--| | LD Reverse Voltage (Max) | 2 V | | | | PD Reverse Voltage (Max) | 20 V | | | | Absolute Max Current | 410 mA | | | | Absolute Max Power | 100 mW | | | | Operating Case Temperature | 0 to 70 °C | | | | Storage Temperature | -10 to 70 °C | | | | Pin Code | 14 Pin, Type 1 | | | | | | | | a. Do not exceed the maximum optical power or maximum drive current, whichever occurs first. | Characteristics (CW; T _{CHIP} = T _{CS} , T _{CASE} = 0 - 70 °C) | | | | | | |---|---------------------------------|--------------------|---------|--------|--| | | Symbol | Min | Typical | Max | | | Center Wavelength | λ _C | 784 nm | 785 nm | 786 nm | | | Single Frequency Output Power ^a (CW @ I _{CW} and T _{CS}) | P _{CW-SF} | 40 mW | 50 mW | - | | | Single Frequency Power Range | ΔP_{SF} | 20 mW ^b | - | - | | | Operating Current (CW) | I _{cw} | - | - | 410 mA | | | Center Temperature for $\Delta T_{stabilized}$ | T _{cs} | 15 °C | - | 35 °C | | | Wavelength-Stabilized Temperature Range | ΔT _{stabilized} | 5 °C | - | - | | | Threshold Current | I _{TH} | - | 100 mA | 150 mA | | | Side Mode Suppression Ratio (SMSR) | SMSR | 25 dB | 40 dB | - | | | Internal Isolator Isolation | ISO | 35 dB | - | - | | | Forward Voltage | V_{F} | - | 2.2 V | 2.8 V | | | Laser Linewidth | Δν | - | 15 MHz | - | | | Monitor Photodiode Current | Iphoto | - | 0.3 mA | - | | | TEC Operation (Typical/Max @ T _{CASE} = 25 °C / 70 °C) | | | | | | | -TEC Current | I _{TEC} | - | 0.15 A | 1.4 A | | | -TEC Voltage | V _{TEC} | - | 0.35 V | 6.0 V | | | -Thermistor Resistance | R _{TH} | - | 10 kΩ | - | | a. This value is the upper limit of the range where the diode can produce a single-frequency output and varies from laser to laser. The performance of each individual laser can be found on the unit-specific data sheet. b. This value is specified for temperatures in the range given by T_{CS} ± 1/2ΔT_{stabilized}. The 20 mW minimum single frequency power range corresponds to output powers between the typical P_{CW-SF} – ΔP_{SF} and P_{CW-SF}, i.e., between 30 mW and 50 mW. ### **Typical Performance Plots** The plots below are typical; performance will vary between individual lasers. Each laser includes a serial-number-specific datasheet detailing performance. The typical output power vs. current is shown for three temperatures within the wavelength stabilized temperature range ($\Delta T_{stabilized}$) of a FPV785S laser diode. When used within the wavelength stabilized temperature range ($\Delta T_{stabilized}$), the FPV785S laser shows excellent wavelength stability over a range of drive currents. The typical optical spectrum is shown above. The data was obtained with a 400 mA drive current and the device held at 25 °C. The typical side mode suppression ratio (SMSR) is shown for three temperatures within the wavelength stabilized temperature range ($\Delta T_{stabilized}$). This high-resolution optical spectrum was obtained using one of Thorlabs' Optical Spectrum Analyzers (OSA201C), which provides 8 pm resolution at 785 nm. The typical monitor photodiode current over laser diode current is shown above. > May 23, 2019 QTN029429-S01, Rev C ## **Drawing**