

4600 nm FP Quantum Cascade Laser, 2.5 W

Description

QF4600D4

The QF4600D4 is a single spatial mode, Fabry-Perot Quantum Cascade Laser designed and manufactured by Thorlabs. This laser operates in continuous wave (CW) mode at room temperature. The QF4600D4 is mounted on an open heatsink D-mount package with both the cathode and anode isolated from the heatsink base. This discrete semiconductor laser is a compact light source suited to many applications. A thermistor is integrated for temperature monitoring. There is no monitor photodiode.

Specifications

General Specifications				
LD Reverse Voltage (Max)	1 V			
PD Reverse Voltage (Max)	N/A			
Absolute Max Current	Varies Between Devices ^a			
Absolute Max Power	3500 mW			
Operating Temperature	15 to 50 °C ^b			
Storage Temperature	-40 to 85 °C ^b			

- a. The absolute maximum current is determined on a device-by-device basis and is listed on the device's data sheet.
- b. Non-condensing environment. Single spatial mode performance is tested and guaranteed at 25 °C.

Optical/Electrical Specifications ^a					
	Symbol	Min	Typical	Max	
Center Wavelength ^b	λς	4.45 μm	4.6 µm	4.75 μm	
Spectral Bandwidth	Δλ		60 nm	_	
(5 - 95% Integrated Power)	ΔΛ	_	00 11111	_	
Output Power	P _{out}	2.5 W	-		
Operating Current	l _{op}	ı	1800 mA	2500 mA	
Threshold Current	I _{TH}	-	800 mA	-	
Forward Voltage	V_{F}	ı	12.5 V	15 V	
Slope Efficiency	ΔΡ/ΔΙ	ı	2.8 W/A	•	
Perpendicular Beam Divergence Angle	θ_{\perp}	_	40°	_	
(FWHM)	Οı	_	70	_	
Parallel Beam Divergence Angle (FWHM)	θ∥	-	30°	-	
Thermistor Resistance ^c	R_T	-	10 kΩ	-	
Steinhart-Hart Coefficients	Α	-	1.129 x 10 ⁻³ K ⁻¹	-	
	В	-	2.341 x 10 ⁻⁴ K ⁻¹		
	С	-	0.878 x 10 ⁻⁷ K ⁻¹	-	

- a. T = 25 °C, CW Current Operation
- This laser exhibits broadband emission. The center wavelength is defined as a weighted average over all the modes.
- c. Thermistor Resistance follows the Steinhart-Hart Equation: $\frac{1}{T} = A + B \ln(R_{TH}) + C(\ln R_{TH})^3$

Performance Plots

Drawing

