

852 nm Grating Stabilized, Single-Frequency Laser Diode

Description

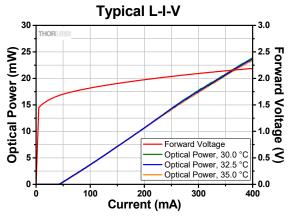
The FPV852S 852 nm, Single-Frequency, Wavelength-Stabilized Laser Diode is based on quantum well epitaxial layer growth and a highly reliable ridge waveguide structure with external volume-holographic-grating (VHG) feedback. This single-frequency laser diode is housed in a butterfly package with an internal optical isolator, monitor diode, TEC and a thermistor that allows the laser to be temperature controlled. This laser diode produces a wavelength-stabilized spectrum with a single-frequency narrow linewidth over the operating power range of approximately 10 to 20 mW. The output is coupled to 1.0 m of FC/APC-terminated 780HP single-mode fiber.

Specifications

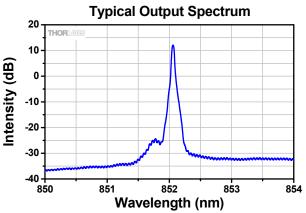
Absolute Maximum Ratings ^a				
LD Reverse Voltage (Max)	2.0 V			
PD Reverse Voltage (Max)	20 V			
Absolute Max Current	400 mA			
Absolute Max Power	30 mW			
Operating Case Temperature	0 to 70 °C			
Storage Temperature	-10 to 70 °C			
Pin Code	14 Pin, Type 1			

a. Do not exceed the maximum optical power or maximum drive current, whichever occurs first.

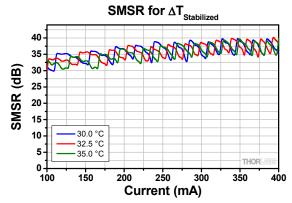
Characteristics (CW; $T_{CHIP} = T_{CS}$, $T_{CASE} = 0 - 70 ^{\circ}C$)					
	Symbol	Min	Typical	Max	
Center Wavelength	λ _C	851 nm	852 nm	853 nm	
Single Frequency Output Power ^a (CW @ I _{CW} and T _{CS})	P _{CW-SF}	18 mW	20 mW	-	
Single Frequency Power Range	ΔP_{SF}	10 mW ^b	-	-	
Operating Current (CW)	I _{cw}	-	-	400 mA	
Center Temperature for $\Delta T_{stabilized}$	T _{CS}	20 °C	-	35 °C	
Wavelength-Stabilized Temperature Range	ΔT _{stabilized}	5 °C	-	-	
Threshold Current	I _{TH}	-	50 mA	100 mA	
Side Mode Suppression Ratio (SMSR)	SMSR	25 dB	40 dB	-	
Internal Isolator Isolation	ISO	35 dB	-	-	
Forward Voltage	V_{F}	-	2.2 V	2.8 V	
Laser Linewidth	Δν	-	15 MHz	-	
Monitor Photodiode Current	Iphoto	-	0.3 mA	-	
TEC Operation (Typical/Max @ T _{CASE} = 25 °C / 70 °C)					
-TEC Current	I _{TEC}	-	0.15 A	1.4 A	
-TEC Voltage	V _{TEC}	-	0.4 V	6.0 V	
-Thermistor Resistance	R _{TH}	-	10 kΩ	-	

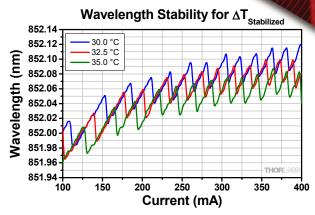

a. This value is the upper limit of the range where the diode can produce a single-frequency output and varies from laser to laser. The performance of each individual laser can be found on the unit-specific data sheet.

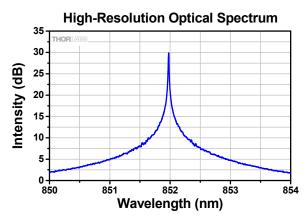
b. This value is specified for temperatures in the range given by $T_{CS} \pm 1/2\Delta T_{stabilized}$. The 10 mW minimum single frequency power range corresponds to output powers between the typical $P_{CW-SF} - \Delta P_{SF}$ and P_{CW-SF} , i.e., between 10 mW and 20 mW.

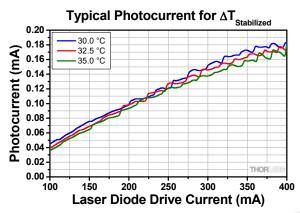


Typical Performance Plots

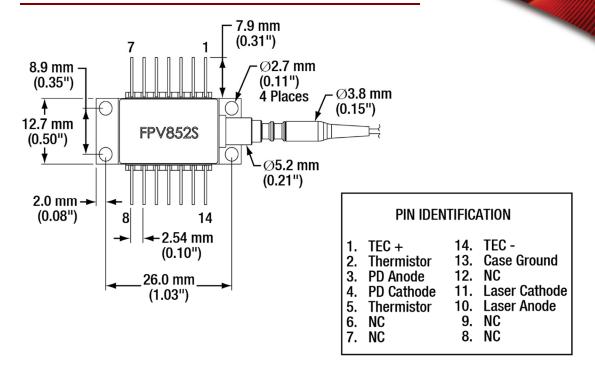

The plots below are typical; performance will vary between individual lasers. Each laser includes a serial-number-specific datasheet detailing performance.

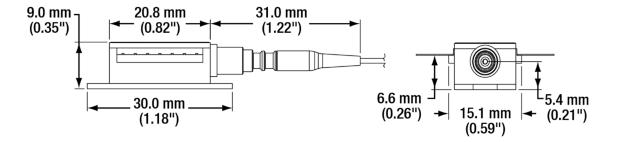

The typical output power vs. current is shown for three temperatures within the wavelength stabilized temperature range ($\Delta T_{stabilized}$) of a FPV852S laser diode.


The typical optical spectrum is shown above. The data was obtained with a 350 mA drive current and the device held at 25 $^{\circ}$ C.


The typical side mode suppression ratio (SMSR) is shown for three temperatures within the wavelength stabilized temperature range ($\Delta T_{stabilized}$).

When used within the wavelength stabilized temperature range ($\Delta T_{stabilized}$), the FPV852S laser shows excellent wavelength stability over a range of drive currents.


This high-resolution optical spectrum was obtained using one of Thorlabs' Optical Spectrum Analyzers (OSA201C), which provides 8 pm resolution at 852 nm.



The typical monitor photodiode current over laser diode current is shown above.

Drawing

