1060 nm, 130 mW DBR Butterfly Laser with Isolator, SM Fiber ### DBR1060SN #### **Description** Thorlabs' DBR1060SN Distributed Bragg Reflector (DBR) laser is a single-frequency laser diode that is well-suited for low-noise pump applications, second harmonic generation, and time-resolved fluorescence spectroscopy. The DBR1060SN includes an integrated optical isolator, thermoelectric cooler (TEC), thermistor, and monitor photodiode. It is packaged in a 14-pin butterfly package with HI1060 single mode optical fiber and an FC/APC connector. #### **Specifications** | DBR1060SN ^a | | | | | | |--|-----------------------------------|---------|-------------|---------|--| | | Symbol | Min | Typical | Max | | | Center Wavelength | λ_{C} | 1058 nm | 1060 nm | 1062 nm | | | Laser Linewidth | Δν | - | 10 MHz | - | | | Output Power CW @ I _{OP} | P _{OP} | 100 mW | 130 mW | - | | | Operating Current | I _{OP} | - | 650 mA | - | | | Mode-Hop-Free Range ^b | $\Delta I_{\text{Mode-Hop-Free}}$ | 20 mA | | | | | Side Mode Suppression Ratio in | SMSR | 30 dB | 50 dB | - | | | Mode-Hop-Free Range ^c | | | | | | | 30 dB BW in Mode-Hop-Free Range ^c | 30 dB BW | - | - | 0.25 nm | | | Threshold Current | I _{TH} | - | 50 mA | - | | | Forward Voltage | V_{F} | - | 1.8 V | 2.5 V | | | Slope Efficiency | ΔΡ/ΔΙ | - | 0.25 W/A | - | | | Current Tuning @ I _{OP} | Δλ/ΔΙ | - | 0.002 nm/mA | - | | | Temperature Tuning @ I _{OP} | Δλ/ΔΤ | | 0.08 nm/°C | | | | Monitor Diode Responsivity @ I _{OP} | I _{MON} /P | - | 50 μA/mW | - | | | Internal Isolation | ISO | - | 33 dB | - | | | TEC Current | I _{TEC} | - | 0.3 A | - | | | TEC Voltage | V_{TEC} | - | 0.4 V | - | | | Thermistor Resistance @ 25 °C | R _{TH} | - | 10 kΩ | - | | - a. $T_{CASE} = 25 \, ^{\circ}C; T_{CHIP} = 25 \, ^{\circ}C.$ - b. Continuous Tuning Range Between Mode Hops - c. As measured with an Optical Spectrum Analyzer (OSA) to empirically determine single frequency range. Laser 30 dB bandwidth and SMSR are subject to monochromator settings and OSA internal algorithms, and will differ from instrument to instrument. | Absolute Max Ratings | | | | |-----------------------------------|---|--|--| | LD Reverse Voltage (Max) | 2 V | | | | Laser Current (Max) ^a | See Serialized Datasheet | | | | Laser Power (Max) ^a | See Serialized Datasheet | | | | TEC Current (Max) | 3.0 A ($T_{CASE} = 20 ^{\circ}C$); 2.9 A ($T_{CASE} = 70 ^{\circ}C$) ^b | | | | TEC Voltage (Max) | 3.6 V ($T_{CASE} = 20 ^{\circ}C$); 4.4 V ($T_{CASE} = 70 ^{\circ}C$) ^b | | | | PD Reverse Voltage (Max) | 15 V | | | | Operating Case Temperature | 0 to 50 °C | | | | Operating Chip Temperature | 10 to 40 °C | | | | Storage Temperature | -10 to 65 °C | | | | | | | | - Some devices will produce the max laser power before exceeding the typical operating current. Do not drive the laser diode beyond the absolute max laser current or power. Operating in this regime can cause damage to the device. - b. Do not operate above maximum operating case temperature. Given for reference purposes only #### **Typical Performance Plots** ## **Drawings** 30.0 mm #### PIN IDENTIFICATION 1. TEC + 14. TEC -13. Case **Thermistor** 12. NC 3. PD Anode 11. LD Cathode 4. PD Cathode 10. LD Anode 5. Thermistor 6. NC 9. NC 7. NC 8. NC