

9200 nm Fabry-Perot Quantum Cascade Laser, 200 mW

QF9200HB

Description

The QF9200HB is a single spatial mode, multi longitudinal mode, Fabry-Perot quantum cascade laser contained in a high heat load (HHL) package, designed and manufactured by Thorlabs. This laser operates in continuous wave (CW) mode at room temperature.

The QF9200HB has a collimated output and offers a standard HHL pinout for electrical and temperature control. Its package is sealed, although the seal is not hermetic. There is no monitor photodiode.

Specifications

Absolute Maximum Ratings (T _{chip} = 25 °C, CW Operation)				
Absolute Max Operating Current	Varies Between Devices ^a			
Absolute Max Output Power	0.45 W			
LD Reverse Voltage (Max)	1 V			
PD Reverse Voltage (Max)	N/A			
TEC Current (Max)	8 A			
TEC Voltage (Max)	14 V			
Operating Temperature	25 to 40 °C ^b			
Storage Temperature	-40 to 85 °C ^b			

- The absolute maximum current is determined on a device-by-device basis and is listed on the device's data sheet.
- b. Non-condensing environment. Single spatial mode performance is tested and guaranteed at 25 °C.

Thermistor Characteristics (T _{case} = 25 °C)							
	Symbol	Min	Typical	Max			
Thermistor Resistance ^a	R_{th}	-	10 kΩ	-			
Chatches at the at Constitution	Α	-	1.129 × 10 ⁻³ K ⁻¹	-			
Steinhart-Hart Coefficients (T _{case} = 25 °C)	В	-	2.341 × 10 ⁻⁴ K ⁻¹	-			
	С	-	$0.878 \times 10^{-7} \mathrm{K}^{-1}$	-			

a. Thermistor resistance follows the Steinhart-Hart equation:

$$\frac{1}{T} = A + B(\ln R_{th}) + C(\ln R_{th})^3$$

Specifications (Cont.)

Optical Electrical Characteristics (T _{chip} = 25 °C, CW Operation)						
		Symbol	Min	Typical	Max	
Center Wavelength		λ	8.8 µm	9.2 µm	9.6 µm	
Spectral Bandwidth (5 – 95% Integrated Power)		Δλ	800 nm	1000 nm	-	
Optical Output Power		P _{out}	200 mW	250 mW	450 mW	
Operating Current		I _{op}	-	1.3 A	2.0 A	
Threshold Current		I_{th}	-	0.7 A	-	
Forward Voltage		V _F	-	9 V	13 V	
Beam Pointing	Parallel ^a	-	-0.75°	0°	+0.75°	
	Perpendicular ^a	-	-2.75°	-2.0°	-1.25°	
Beam Divergence	Parallel ^a	θι	3 mrad	6 mrad	11 mrad	
Angle (FWHM)	Perpendiculara	$ heta_{\perp}$	3 mrad	6 mrad	11 mrad	
M ²	Parallel ^a	M^2_{\parallel}	1.0	1.1	1.3	
	Perpendiculara	${\sf M^2}_\perp$	1.0	1.1	1.3	
Minimum Beam Diameter (D4σ Method) ^b		D	0.5 mm	1.5 mm	2.5 mm	

- a. For this laser, these terms are defined with respect to the plane of the base plate.
- b. Obtained by scanning a razor across the beam and measuring the points where 10% of the total beam intensity and 90% of the total beam intensity are observed.

Sample Performance Plots

The temperatures given are for T_{chip} .

Sample Performance Plots (Cont.)

The data above is given at T_{CHIP} .

Intensity (a.u.) 4.5 10000 4.0 3.5 8000 3.0 6000 2.5 2.0 4000 1.5 1.0 2000 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

QF9200HB Sample Beam Profile

X Axis (mm)

The beam profile was taken 310 mm from the sample.

> May 16 2023 QTN051448-S01, Rev A

Drawing for QF9200HB

Pin	Description	
1	TEC (-)	
2	Not Present	
3	No Connection	
4	Laser Anode (+)	
5	TEC Control Thermistor, 10 $k\Omega$	
6	TEC Control Thermistor, 10 $k\Omega$	
7	Laser Cathode (-)	
8	EEPROM (+)	
9	EEPROM (-/Ground)	
10	TEC (+)	