Datasheet OE-300-IN-03 200 MHz Variable Gain Photoreceiver OUI 👦 Offset OE-300-IN-03 F Features Adjustable transimpedance gain from 10^2 to 10^8 V/A ٠ Wide bandwidth up to 200 MHz • InGaAs-PIN photodiode covering the 800 to 1700 nm wavelength range • High dynamic input range up to 10 mW optical power • Very low noise, NEP down to 52 fW/√Hz • Switchable low pass filters for minimizing wideband noise • Free-space input 1.035"-40 threaded . Full manual and remote control capability . Applications All-purpose low-noise photoreceiver (O/E converter) for the MHz range ٠ Time resolved optical pulse and power measurements . Laser intensity noise measurements (RIN) ٠ Optical front-end for oscilloscopes, spectrum analyzers, A/D converters and • **RF lock-in amplifiers** Block Diagram Current to voltage converter Buffer-amplifier and Programmable Programmable AC/DC coupling gain amplifier bandwidth limiting Offset nulling OPTICAL 100 Ω ... 10 MΩ Rf INPUT VOLTAGE OUTPUT × 10 1/V × 1 4 10 MH • FBW High speed Low noise • 1 MHz Stabilized Overload detector bias voltage ¥3 DC-MONITOR OUTPUT Parameter Supply voltage regulator control unit ₹\$K POWER SUPPLY Manua Optocoupler switches isolated unit DIG. CONTROL INPUTS BS01-0E-300_R2 SOPHISTICATED TOOLS FOR SIGNAL RECOVERY П 0

200 MHz Variable Gain Photoreceiver

Intended Use	The OE-300-IN-03 is a high speed variable gain photoreceiver. It is designed for fast and precise conversion of small optical signals into equivalent output voltages. Operation is mostly self-explanatory. If in doubt, consult this document or contact support@femto.de.					
	For safe operation, please refer to the damage thresholds specified in the "Absolute Maximum Ratings", "Temperature Range" and "Power Supply" sections of this document.					
	The operating environment must be free of smoke, dust, grease, oil, condensing moisture, and other contaminants that could affect the operation or performance.					
Available Version	0E-300-IN-03-FST	1.035"-40 threaded flange for free space applications compatible with many optical standard accessories				
		Please note: Using the fiber-adapters PRA-FC and PRA-FSMA is not recommended as the small size of the active area can drastically reduce the coupling efficiency				
Related OE-300 Models	See separate datasheets for	following models on www.femto.de:				
	0E-300-SI-10-FST	Si-PIN, 1 \times 1 mm, 400 - 1000 nm 1.035"-40 threaded flange				
	0E-300-SI-30-FST	Si-PIN, Ø 3 mm, 320 - 1000 nm 1.035"-40 threaded flange				
	0E-300-IN-01-FC	InGaAs-PIN, Ø 80 µm, 900 - 1700 nm FC fiber receptacle only				
Available Accessories	PRA-PAP	Alternative mounting option: post adapter plate, easy to mount on FEMTO photoreceiver series OE, FWPR, PWPR, HCA-S and LCA-S				
	PS-15-25-L	Power Supply input: 100 – 240 VAC output: ±15 VDC				
	LUCI-10	Compact digital I/O interface for USB remote control, supports opto-isolation of amplifier signal path from PC USB port, 16 digital outputs, 3 opto-isolated digital inputs, bus-powered operation				
		-				
OPHISTICATED	TOOLS FOR SIGNA	AL RECOVERY F E M T C				

200 MHz Variable Gain Photoreceiver

Specifications	Test conditions	$V_s = \pm 15$ V, $T_A = 25$ °C, output load impedance 50 Ω , warm-up 20 minutes (min. 10 minutes recommended)					
Gain	Transimpedance gain Gain accuracy	$1\times 10^2 \hdown 1 \times 10^8$ V/A (output load 50 $\Omega)$ ± 1 % electrical, between settings					
Frequency Response	Lower cut-off frequency Upper cut-off frequency (–3 dB)	DC / 100 Hz, switchable up to 200 MHz (see table below), switchable to 1 MHz or 10 MHz					
Input	Optical CW saturation power Noise equivalent power (NEP)	see table below see table below					
Performance depending on Gain Setting	Gain setting (low noise) (V/A) Upper cut-off frequency (–3 dB) Rise/fall time (10 % - 90 %) NEP (/\/Hz, @1550 nm) Measured at Integr. input noise (RMS)* CW sat. power (@ 1550 nm)	10 ² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 200 MHz 80 MHz 14 MHz 3.5 MHz 1.8 MHz 220 kH 1.9 ns 3.45 ns 27 ns 85 ns 212 ns 1.6 µs 192 pW 23 pW 1.9 pW 410 fW 152 fW 55 fW 20 MHz 8 MHz 1.4 MHz 350 kHz 180 kHz 22 kHz 4.8 μW 370 nW 23 nW 3.4 nW 0.82 nW 64 pW 10 mW 1.0 mW 100 μW 10 μW 1.0 μW 100 nW					
	Gain setting (high speed) (V/A) Upper cut-off frequency (–3 dB) Rise/fall time (10 % - 90 %) NEP (/√Hz, @ 1550 nm) Measured at Integr. input noise (RMS)* CW sat. power (@ 1550 nm) * The integrated input noise is me	10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ 175 MHz 80 MHz 14 MHz 3.5 MHz 1.8 MHz 220 kHz 2.3 ns 3.6 ns 27 ns 85 ns 210 ns 1.7 µs 137 pW 6.8 pW 1.4 pW 360 fW 127 fW 52 fW 18 MHz 8 MHz 1.4 MHz 350 kHz 175 kHz 22 kHz 2.9 µW 270 nW 20 nW 3.3 nW 0.82 nW 64 pW 1.0 mW 100 µW 10 µW 1.0 µW 100 nW 10 nW					
	* The integrated input noise is measured with a shaded input in the full bandwidth ("FBW") setting (referred to 1550 nm). The measurement bandwidth is $3 \times$ the upper cut-off frequency at the specific gain setting; filter slope is a 1st order roll-off.						
	The input referred peak-peak noise can be calculated from the RMS noise as follows: $P_{\text{Input noise peak-to-peak}} = P_{\text{Input noise BMS}} \times 6$						
	The output noise is given by:	$\begin{array}{ll} U_{\text{Output noise RMS}} & = P_{\text{Input noise RMS}} \times gain \\ U_{\text{Output noise peak-to-peak}} & = U_{\text{Output noise RMS}} \times 6 = P_{\text{Input noise RMS}} \times gain \times \end{array}$					
	The integrated noise will be reduced considerably by setting the low pass filter to "1 MHz" or "10 MHz" instead of "FBW". This is especially useful for continuous wave (CW) measurements.						
Detector	Detector type Active area Spectral range Sensitivity Dark current	InGaAs-PIN photodiode 300 µm diameter 800 - 1700 nm 0.95 A/W typ. (@ 1550 nm) 0.1 nA typ.					
Output	Output voltage rang Output impedance Max. output current Slew rate Output offset compensation	± 1 V (@ 50 Ω output load), for linear amplification 50 Ω (designed for 50 Ω load) ± 40 mA (short-circuit proof) 1000 V/µs adjustable by offset potentiometer and external control voltage, output offset compensation range min. ± 100 mV					
I OPHISTICATED T	OOLS FOR SIGNAL	RECOVERY FEDTO					

Datasheet

Specifications (continued) DC Monitor Output Mode Monitor gain Monitor output gain Low noise Gain setting divided by -1 High speed Gain setting divided by -10 Monitor output polarity invertina Monitor output voltage range $\pm 1 \text{ V} (@ \geq 1 \text{ M}\Omega \text{ load})$ Monitor output bandwidth DC ... 1 kHz Monitor output impedance 1 k Ω (designed for \geq 1 M Ω load) Indicator LED Function overload Control input voltage range LOW bit: -0.8 V ... +1.2 V, HIGH bit: +2.3 V ... +12 V **Digital Control** Control input current 0 mA @ 0 V, 1.5 mA @ +5 V, 4.5 mA @ +12 V Overload output non active: <0.4 V @ 0 ... -1 mA active: typ. 5 ... 5.1 V @ 0 ... 2 mA Ext. Offset Control Control voltage range ±10 V Offset control input impedance 15 kΩ Material FST flange Optical Input Connector 1.4305 stainless steel, nickel-plated Material FST coupler ring 1.4305 stainless steel, glass bead blasted Power Supply Supply voltage ±15 V (±14.75 V ... ±16.5 V) Supply current ± 110 / -90 mA typ. (depends on operating conditions, recommended power supply capability min. ±200 mA) Case Weight 360 g (0.79 lbs) Material AIMg4.5Mn, nickel-plated -40 °C ... +80 °C Storage temperature Temperature Range 0 °C ... +60 °C Operating temperature Absolute Maximum Ratings Optical input power (CW) 12 mW Digital control input voltage -5 V/+16 V relative to digital ground DGND (pin 9) Analog control input voltage ± 15 V relative to analog ground AGND (pin 3) Power supply voltage +20 V Connectors Input 1.035"-40 threaded flange for free space applications Output BNC jack (female) LEMO® series 1S, 3-pin fixed socket Power supply (mating plug type: FFA.1S.303.CLAC52) PIN 2 0 O] <u>pin 1</u> Pin 1: +15 V +Vs Pin 2: -15 V PIN 3 Pin 3: GND GND Connectors (continued) SOPHISTICATED TOOLS FOR SIGNAL RECOVERY П Ц 0

200 MHz Variable Gain Photoreceiver

	Control port	Pin 2:-12 V (staPin 3:AGND (andPin 4:+5 V (stabPin 5:digital outpPin 6:DC MonitoPin 7:NCPin 8:offset contPin 9:DGND (grocPin 10:digital conPin 12:digital conPin 13:digital conPin 14:digital con	o o o o o bilized power bilized power log ground f ilized power out: overload r output rol voltage ir und for digit: trol input: ga trol input: ga trol input: ga trol input: hig off frequency off frequency	r supply ou r supply ou r supply ou or pins 1 - supply out (referred to al control p in, LSB in in, MSB c/DC gh speed / (limit 1 MH t	itput*) 8) put*) o pin 3) bins 10 - 16) low noise /Hz
Remote Control Operation	General	Remote control input bits are opto-isolated and connected by a logical OR function to the local switch settings. For remote control set the corresponding local switches to "Remote", "DC", "L" (low noise mode) and "FBW", and select the desired setting via a bit code at the corresponding digital inputs. Mixed operation, e.g. local AC/DC setting and remote controlled gain setting, is also possible.			
	Gain setting	Low noise High speed Gain (V/A) Gain (V/A) Pin 14=LOW Pin 14=HI 10^2 10^3 10^3 10^4 10^5 10^6 10^6 10^7 10^7 10^8	d Pin 12	Pin 11 LOW HIGH HIGH LOW LOW	Pin 10 LSB LOW HIGH LOW HIGH LOW HIGH
	AC/DC setting	<u>Coupling Pin 13</u> DC LOW AC HIGH			THOM
	Low pass filter setting	<u>Upper cut-off freq. limit</u> full bandwidth 10 MHz 1 MHz	Pin 15 Low High Low	Pin 16 LOW LOW HIGH	
	High speed / low noise setting	<u>Mode</u> low noise mode high speed mode	Pin 14 LOW HIGH		

200 MHz Variable Gain Photoreceiver Ordering Information 0E-300-IN-03-FST 1.035"-40 threaded flange for free space applications and for use with various types of optical standard accessories Spectral Responsivity 0E-300-IN-03-FST 1.2 1.0 0.8 Sensitivity in A/W 0.6 0.4 0.2 0 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 Wavelength in nm DB-Sens-OE-300-IN-03-FST_R2

0

1

M

0E-300-IN-03

Datasheet

Datasheet

Datasheet

